Innovative installation for parabolic trough testing

The new test stand for parabolic trough collectors in Spain  (Graphic: CTAER)
The new test stand for parabolic trough collectors in Spain (Graphic: CTAER)

The Advanced Technology Centre for Renewable Energies (CTAER) from Spain has signed a contract with IDOM engineering to start work on the construction of the variable geometry testing facility for the evaluation and characterization of solar collectors of the parabolic trough type. The construction phase has already begun.

The project aims to build infrastructure for research and development of technologies that produce thermosolar energy, in the present case for those that use parabolic trough collectors, which are the most used collector type.

This engineering project is based on a variable geometry, where the test systems are not fixed but can follow the sun’s apparent movement. The versatility of the new infrastructure incorporates greater capacities than those that currently exist. They will make it possible to test new components and systems and a high level of thermal, optical-structural and fluid dynamic evaluations of parabolic trough collectors. This will allow development and experimental validation of rules, and standardized characterization and evaluation procedures for this type of collectors.

The new infrastructure will be located on land owned by CTAER in the municipality of Tabernas in the province of Almeria, Spain. Site work will begin in July and finish approximately in November 2013.

Jan Gesthuizen

Similar Entries

DNV GL, the world’s largest resource of independent energy experts and renewables certification body, has opened the first control hardware in loop (CHIL) test facility for renewable energy generation plants. The facility connects physical power plant controllers to a real-time simulator, allowing the controller to be fully tested and validated without the need for an actual generation facility or power grid. This enables cost-effective, low-risk testing under realistic conditions for all forms of renewable energy control systems.

BASF and bse Engineering today signed an exclusive joint development agreement for BASF to provide custom made catalysts for a new chemical energy storage process. This process will enable economically viable transformation of excess current and off-gas carbon dioxide (CO2) into the chemical energy storage methanol in small-scale, delocalized production units.

Photo: Heat2Hydro/Rackam

Since the summer, two parabolic trough collectors have been drying sludge at a waste water treatment plant in Surprise in the state of Arizona, USA. The test project was developed by US-based Heat2Hydro to evaluate the effectiveness of this solution. The objective is to reduce the water content of the sludge and make it easier to transport. The municipality aims at expanding solar drying capacity to 5 MW thermal in about two years.

DONG Energy has entered into an agreement to sell 50% of Borkum Riffgrund 2, a 450 megawatt (MW) German offshore wind farm project, to Global Infrastructure Partners (GIP). Borkum Riffgrund 2 is currently under construction and is expected to be fully commissioned in 2019.